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Abstract: Big Data phenomenon is a result of novel technological developments in sensor, computer and 
communication technologies. Nowadays more and more data are produced by nanoscale photonic, 
optoelectronic and electronic devices. However, their quality characteristics could be very low. The paper 
proposes new methods of the data management with huge data amounts that is based on associating of data 
quality indicators with each data entity. To achieve this goal, one needs to define the composition of the data 
quality indicators and to develop their integration calculus. As data quality evaluation involves multi-
disciplinary research, various metrics have been investigated. The paper describes two major approaches in 
assigning the data quality indicators and developing their integration calculus. The information systems 
approach employs traditional high-level metrics like data accuracy, consistency and completeness. The 
engineering approach utilizes signal characteristics processed with the probability based calculus. The data 
quality metrics composition and calculus are discussed. The tools developed to automate the metrics selection 
and calculus procedures are presented. The user-friendly interface examples are provided. Copyright © 2015 
IFSA Publishing, S. L. 
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1. Introduction 

 
The advances in computing, instrumentation and 

communication technologies over the last decade laid 
a strong foundation for data generation and storage 
on a staggering scale. For example, the Large Hadron 
Collider at CERN can generate 40 terabytes of data 
every second during experiments. Boeing 737 jet 
engines’ sensors produce 10 terabytes of data for 
every 30 minutes [1]. The phenomenon of Big Data 
is in a large degree the result of the current and 
emerging sensor systems, which are creating ever-
increasing amounts of data. Enabling nano-scale 

instruments, communication and processing 
equipment results in generating even larger amounts 
of data. We entered a new era of an exponential 
growth of data collected and made available for 
various applications. The existing technologies are 
not able to handle such big amounts of data. This 
phenomenon was called the big data. Photonics and 
nanotechnology enabled microsystems perform 
multiple generations and fusions of multiple data 
streams with various data quality [2-7]. The 
development and application of quantum-mechanical 
nanoscale electronic, photonic, photoelectronic 
communication, sensing and processing devices 
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significantly increase an amount of data which can be 
measured and stored. These organic, inorganic and 
hybrid nanosensors operate on a few photons, 
electrons and photon-electron interactions [2, 3, 5, 7]. 
Very low current and voltage, high noise, large 
electromagnetic interference, perturbations, dynamic 
non-uniformity and other adverse features result in 
heterogeneous data with high uncertainty and poor 
quality. The super-large-density quantum and 
quantum-effect electronic, optoelectronic and 
photonic nanodevices and waveguides are 
characterized by:  

1) Extremely high device switching frequency 
and data bandwidth (~1000 THz);  

2) Superior channel capacity (~1013 bits);  
3) Low switching energy (~10–17 J) [8, 9].  
The importance of DQ analysis, data 

enhancements and optimization is emphasized  
due to:  

1) High noise-to-signal ratio (ratio of mean to 
standard deviation of measured signals is ~0.25 in the 
emerged electrons-photons interaction devices);  

2) High probability of errors (p is ~0.001);  
3) High distortion measure, reaching ~0.1 to 0.3;  
4) Dynamic response and characteristic non-

uniformity. These characteristics must be measured, 
processed and evaluated and provided to a data used 
along with the data. 

New generations of information systems provide 
communication and networking capabilities to 
transfer, fuse, process and store data. Various 
applications require the data delivery from their 
origin to the point of use that might be far away. The 
data transfer may lead to information losses, 
attenuation, distortions, errors, malicious alterations, 
etc. Security, privacy and safety aspects of data 
communication and processing systems nowadays 
play a major role and may have a dramatic effect on 
the quality of data delivered. 

New DQ management methods, quality 
evaluation and assurance (QE/QA) tools and robust 
algorithms are needed to ensure security, safety, 
robustness and effectiveness of various sensor-based 
engineering and technological systems. As the 
amount of data available multiplies every year, 
current information systems are not capable to 
process these large data arrays to make the best 
decision. Big data applications require better data 
selection of high quality inputs. The absence of DQ 
indicators provided along with the data hinders the 
recognition of potential calamities and makes data 
fusion and mining procedures as well as decision 
making prone to errors.  

This paper represents an extended and enhanced 
version of [10] that was presented at the SecureWare 
2014 conference in November 2014. In the paper we 
offer a novel system approach to the data 
management that aims at shifting a sensor system 
target from collecting more and more data regardless 
of either they are needed or could be used in a 
particular application to the efficient and effective 
data collection schemes, where data of a required 

quality are collected when and delivered to where 
they are needed. We propose to associate the DQ 
indicators with each data entity, and replace one-
dimensional data processing and delivery with multi-
dimensional data processing and delivery along with 
the corresponding DQ indicators. To realize this 
approach, we need to develop and describe the 
structure and content of these DQ indicators, develop 
the calculus of processing, and, develop interactive 
tools to automate this process. The current situation 
in DQ research is presented in Section 2. As DQ 
evaluation represents a multidisciplinary field, where 
various DQ indicators have been tried in various 
applications. However, we believe there are currently 
exist two major approaches to the DQ evaluation. 
Engineering approach attempts to evaluate the quality 
of electrical signals and works on the physical level 
(see [11] for more details). The approach tends to 
develop the calculus for the evaluation process. The 
DQ indicators suitable to be employed for signal 
quality evaluation are given in Section 3. In 
information system approach, which is presented in 
Section 4, while the DQ calculus is reported in 
Section 5, higher level indicators dealing with time 
and data based characteristics are employed. The 
automation tools are documented in Section 6. The 
conclusions are outlined in Section 7. 

 
 

2. Current Environment and 
Achievements in DQ Evaluation 
 
DQ represents an open multidisciplinary research 

problem, involving advancements in computer 
science, engineering and information technologies. In 
all those fields, it is essential to develop technologies 
and methods to manage, ensure and enhance quality 
of data. Related research in a networking field 
attempted to investigate how the network 
characteristics, standards and protocols can affect the 
quality of data collected and communicated through 
networks. In sensor networks, researchers started to 
investigate how to incorporate DQ characteristics 
into sensor-originated data [12]. Guha, et al. 
proposed a single-pass algorithm for high-quality 
clustering of streaming data and provided the 
corresponding empirical evidence [13]. Bertino, et al. 
investigated approaches to assure data 
trustworthiness in sensor networks based on the game 
theory [14] and provenance [15]. Chobsri,  
et al. examined the transport capacity of a dense 
wireless sensor network and the compressibility of 
data [16]. Dong and Yinfeng attempted to optimize 
the quality of collected data in relation to resource 
consumption [17-18].  

Current developments are based on fusing 
multiple data sources with various quality and 
creating big data collections. Novel solutions and 
technologies, such as nano-engineering and 
technology are emerged in order to enable DQ 
assessment. Reznik and Lyshevski outlined 
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integration of various DQ indicators representing 
different schemes ranging from measurement 
accuracy to security and safety [19], as well as 
 micro- and nano-engineering [20]. The 
aforementioned concepts are verified, demonstrated 
and evaluated in various engineering and science 
applications [21-22]. 
 
 
3. DQ Indicators Composition: 

Engineering Approach 

3.1. Preliminary Definitions and Formulas 
 

This method utilizes information theory measures 
and employs the probability based metrics and 
calculus techniques. It assumes deriving quantitative 
estimates and capability measures with the goal to 
evaluate processing performance and quality. The 
processing schemes are evaluated by analyzing the 
Shannon and quantum-mechanical performance 
limits in classical and quantum domains.  
For a random variable Xi with n outcomes  
{xi: i=1, 2, …, n–1, n} and pdf p(xi), the entropy is 
calculated as [23] 

 


∈

−=
Xx

xpxpXH )(log)()( 2
 

(1) 

 
The mutual information between the input X and 

output Y quantitatively defines:  
1) The amount of information received on 

average; 
2) The dependence of X and Y. The classical and 

quantum mutual information I(X;Y) and I(X;Y) 
depend on the classical and quantum entropies H(X) 
and H(X). These quantitative information amounts 
are estimated as I and I [3, 4, 11, 24-25] 

 
I(X;Y)=I(Y;X)=H(X)–H(X|Y)=H(Y)–H(Y|X)= 

H(X)+H(Y)–H(X,Y), 
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I(X;Y)=H(X) – H(X|Y), (2) 

 
where pX,Y(x,y) is the joint pdf of X and Y; pX(x) and 
pY(y) are the marginal probability density functions of 
X and Y. 

Example 3.1. If X and Y are independent, 

p(x,y)=p(x)p(y). Hence 01ln
)()(

),(
ln ==

ypxp

yxp , and 

I(X;Y)=0. 
 
The positively defined mutual information 

I(X;Y)≥0 determines the average amount of 
information received per symbol transmitted  
or processed. 

The conditional entropy H(X|Y=y) of a random 

variable X, that is conditional on a particular 
realization y of Y, defines the expected conditional 
information content with respect to both X and Y.  
We have 
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H(X|Y)≥0 
(3) 

 
The conditional entropy H(X|Y) corresponds to 

the average loss of information LI=H(X|Y). Here, 
H(X)≥H(X|Y).  

If X and Y are independent, H(X|Y)=H(X) and 
I(X;Y)=0.  
The joint entropy is the entropy H(X,Y) is 
 

H(X,Y) = H(X) + H(Y|X) = H(Y) + H(X|Y), 
),(log),(),(

,
,2,−=

yx
YXYX yxpyxpYXH  (4) 

 
Analog and digital deterministic computing of 

real-valued physical variables guarantee exceptional 
performance. Quantum communication and 
processing on a few photons and electrons result in 
significant uncertainties, distortions and errors [8]. 
An inherent quantum determinism ensures quantum-
deterministic communication and processing on the 
utilizable initial (I) and final (F) state transductions 
S=[SI,SF]T, SI:vI→SF:vF performed on real-valued, 
directly detectable, measurable and processable 
physical variables v [5, 23-24]. The measured X and 
Y result in p(x), H(X), H(X;Y), I(X;Y) and other 
measures and estimates. This concept is substantiated 
by natural systems, as well as by commercialized 
quantum-effect optoelectronic and photonic devices 
[6, 8]. A quantum-effect processing primitive Pj 
exhibits transductions Sj(v) on detectable, measurable 
and processable variables vj yielding distinguishable 
and computable transforms Tj(S,v). These  
quantum transductions Sj(v) result in processing  
tasks [5, 23-24]. 

 
 

3.2. Communication Channel Capacity 
 

For conventional and quantum-deterministic 
communication, the channel capacity of a stationary 
memoryless channel with finite input and output 
alphabets is  
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3.3. Data Fusion and Data Exchange Rate  
 

These are the DQ related characteristics, which 
demonstrate the achievable performance of the 
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processing platforms that could be reached despite 
errors, distortions, non-uniformity, inconsistencies, 
sensitivity and uncertainties. Using the probability of 
a bit error pb, the maximum data fusion rate is  
 

)(1
)(

2
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b
b pH

C
pr

−
= , 

H2(pb)=–[pblog2pb+(1–pb)log2(1–pb)], 
(6) 

 
where H2 is the binary entropy function. 
 
 
3.4. Distortion Measure  
 

Consider a sequence X1, …, Xn with p(x) and a 
finite alphabet A, x∈A. Using the reproduced 
alphabet Ar with symbols xr∈Ar, the finite distortion 
measure d: A×Ar → R is  
 

dmax=
rr AxAx ∈∈ ,

max d (x,xr)<∞ (7) 

 
The distortion depends on the sequences, 

encoding and decoding functions, etc. The rate 
distortion function for a source X with d(x,xr) can be 
defined as 
 

rI(D)=minI(X;Xr), rI (D)=minI(X;Xr), (8) 
 
I(X;Xr)=H(X)–H(X⏐Xr)≥H(p)–H(D), rI(D)≥H(p)-
H(D). 

The quantity minI(X;Xr) is found with respect to 
all condition distributions p(xr⏐x) for which the joint 
distribution p(x,xr)=p(x)p(xr⏐x) satisfies the imposed 
distortion constraints. 

 
 

3.5. Data Processing Capability 
 

The data processing capability is estimated as 
 
D=BI(X;Y)r–1(pb)rI

–1(D), D=RI(X;Y)r–1(pb)rI
–1(D), (9) 

 
where B is the bandwidth; R is the  
quantum transduction rate in the microscopic 
processing system.  
 
 
3.6. Data Processing Complexity 
 

The entropies H and H define the data  
set complexity. A finite length of the string x∈{0, 1} 
is denoted as l(x). The Kolmogorov  
descriptive complexity  
 

)(min)(
)(:

plxK
xpUp
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provides the minimal description length l of a string x 
with respect to a universal processor U within a 
processing realization p. Here, U is the computable 
function of arguments x and p.  

Binary strings are the words in the alphabet 
A={0,1}. For any computable function U: A→A. The 
complexity of x∈A is defined with respect to U. For 
any processor P 
 

KU(x) ≥ cKP (x), ∀x, c > 0, (11) 
 
where c is the constant which depends on U and P. 
Using KU(·), we define the mutual complexity as 
 

IK(X;Y) = KU(Y) – H(Y|X, KU(X)) (12) 
 

The data processing complexity estimates are 
given as 
 
L = H(X)KU(x)IK(X;Y), L = H(X)KU(x)IK(X;Y) (13) 

 
 
3.7. Data Quality 
 

A Markov information source is a pair (M, f) of 
stationary Markov chain M and function f of 
reachable states sk, f(sk): S→A. The transductions 
Sj(v) are on detectable, measurable and processable 
variables vj. The mapping f(sk) maps states S into the 
Markov chain to entities in the alphabet A. To 
estimate the data quality of information sources, we 
use I≥0 or I≥0. The sequence of length n has a 
complexity ~O(n). The probability of an input  
p is ~2–l(p). The universal probability of a binary 
string x is 
 

( )xpUxP
xpUp
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U === 
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PU(x)≈2–K(x) 
(14) 

 
Define the data quality measures as 

 
Dq = I(X;Y)PU (x), Dq = I(X;Y)PU(x) (15) 

 
The mutual information does not depend entirely 

on the input – response mapping. The I(X;Y) is 
predefined by the input probabilities. Hence, some 
measures and estimated may not be fully 
characterized and evaluated.  

 
 

3.8. Data Reliance 
 
Using the real-valued deterministic φd(·) and 

probabilistic φp(·) characteristics, given as a known 
set of functions in the defined function space, the 
data reliance measure is defined by using an  
operator L as 
 

L: F(Dcφd(·)φp[pi(x),pj(x,y)])→Dr, 
L: F(Dcφd(·)φp[pi(x),pj(x,y)])→Dr 

(16) 

 
The deterministic parametric characteristics φd(·), 

such as accuracy, linearity, noise, error, signal-to-
noise ratio and others, are available. In addition, the 
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pdfs of faults, failures, defects, characteristic 
variations, sensitivity, noise, errors and other 
quantities may be known and characterized by φp(·). 
For example, the normal Ni(μi,σi

2) and extreme value 
Vi(μi,σi,ki) pdfs are found. The n-dimensional 
deterministic and statistic analyses can be performed 
using factor, principal component, classification and 
other models. The data reliance Dr degrades with the 
decrease of device size which leads to the parameter 
variations, increase of noise, etc. 

Example 3.2. For the nanoscaled optoelectronic 
devices, we use the descriptive pdfs of parameter 
variations Nv(μv,Σv), noise Nn(μn,Σn) and reliability 
Vr(μr,σr,kr). The analysis can be accomplished. The 
measured signal is X=S+N, where S and N are the 
not-perturbed signal and noise. Thus, 
pS,N(s,n)=pS(s)pN(n) with pN|S(n|s)=pN(n), 
pX|S(x|s)=pN(n–s). For N~L(α), S~L(β), the parameters 
α and β are estimated, 
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4. DQ Metrics Composition in 
Information Systems  
 
Data may have various quality aspects, which can 

be measured. These aspects are also known as data 
quality dimensions, or metrics. Traditional 
dimensions are as follows, some of them are 
described in [26-27]: 
 Completeness: Data are complete if they have no 

missing values. It describes the amount, at which 
every expected characteristic or trait is described 
and provided. 
 Timeliness: Timeliness describes the attribute that 

data are available at the exact instance of its 
request. If a user requests for data and is required to 
wait a certain amount of time, it is known as a data 
lag. This delay affects the timeliness and is  
not desirable. 
 Validity: It determines the degree, at which the 

data conforms to a desired standard or rules.  
 Consistency: Data are consistent if they are free 

from any contradiction. If the data conforms to a 
standard or a rule, it should continue to do so if 
reproduced in a different setting. 
 Integrity: Integrity measures how valid, complete 

and consistent the data are. Data’s integrity is 
determined by a measure of the whole set of other 
data quality aspects / dimensions. 
 Accuracy: Accuracy relates to the correctness of 

data and measurement uncertainty. Data with low 
uncertainty are correct. 
 Relevance: It is a measure of the usefulness of the 

data to a particular application.  
 Reliability: The quality of data becomes irrelevant 

if the data are not obtained from a reliable source. 

Reliability is a measure of the extent, to which one 
is willing to trust the data. 
 Accessibility: It measures the timeliness of data.  
 Value added: It is measured as the rate of 

usefulness of the data. 
The methodologies of evaluating the DQ aspects 

listed above have been developed over the decades. 
They well represent the quality of the data at the 
point of their origin at the data source. However, 
nowadays most of the data are used far away from 
the point of their origin. In fact, the structured data 
are typically collected by distributed sensor networks 
and systems, then transmitted over the computer and 
communication networks, processed and stored by 
information systems, and, then, used. All those 
communication, processing and storage tasks affect 
the quality of data at the point of use, changing their 
DQ in comparison to one at the point of origin. The 
DQ evaluation should integrate accuracy and 
reliability of the data source with the security of the 
computer and communication systems. The high 
quality of the data at the point of their origin does not 
guarantee even an acceptable DQ at the point of use 
if the communication network security is low and the 
malicious alternation or loss of data has a  
high probability. 

We describe the DQ evaluation structure as a 
multilevel hierarchical system. In this approach, we 
combine diverse evaluation systems, even if they 
vary in their design and implementation. The 
hierarchical system should be able to produce a 
partial evaluation of different aspects that will be 
helpful in flagging the areas that need urgent 
improvement. In our initial design we will classify 
metrics into five groups (see Fig. 1):  

1. Accuracy evaluation; 
2. Measurement and reliability evaluation; 
3. Security evaluation; 
4. Application functionality evaluation; 
5. Environmental impact. 

 
 

 
 

Fig. 1. Integral quality evaluation composition. 
 
 

While the first three groups include rather generic 
metrics, groups #4 and #5 are devoted to metrics, 
which are specific to a particular application. Our 
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metrics evaluation is based on existing approaches 
and standards, such as [28] for measurement 
accuracy and [29] for system security. Table 1 gives 
a sample of generic metrics representing all first three 

groups, while Table 2 lists the metrics, which are 
considered specific to a particular sensor and  
an application.  

 
 

Table 1. Samples of Generic Metrics. 
 

Generic 
Attribute 

Name 

DQ indicator/group 
(Fig.1) 

Description 

Time-since-
Manufacturing 

Maintenance/reliability The measure of the age of the device 

Time-since-
Service 

Maintenance/reliability 
The measure of the days since last service was performed in accord with 
the servicing schedule 

Time-since-
Calibration 

Calibration/reliability 
The measure of the days since last calibration was performed in accord 
with the calibration schedule 

Temperature 
Range 

Application/performance 
The measure of temperature range within which the device will provide 
optimum performance 

Physical 
Tampering 
Incidences 

Physical security/security 
The number of reported incidents that allowed unauthorized physical 
contact with the device 

System 
Breaches 

Access control/security 
The measure of the number of unauthorized accesses into the system, 
denial of service attacks, improper usage, suspicious investigations, 
incidences of malicious code 

System 
Security 

Security/security Measures presence of intrusion detection systems, firewalls, anti-viruses 

Data Integrity Vulnerabilities/securities Number of operating system vulnerabilities that were detected 
Environmental 
Influences 

Environment/environment 
Number of incidences reported that would subject the device to 
mechanical, acoustical and triboelectric effects 

Atmospheric 
Influences 

Environment/environment 
Number of incidences reported that would subject the device to 
magnetic, capacitive and radio frequencies 

Response 
Time 

Signals/reliability 
Time between the change of the state and time taken to record  
the change 

 
 

Table 2. Samples of Specific DQ Metrics (examples of electric power and water meters). 
 

Device Name 
Application specific 

Quality indicator 
Description 

Electric / 
Power Meters 

Foucalt Disk Check to verify the material of the foucalt disk 

Friction Compensation 
Difference in the measure of initial friction at the time of application of the 
compensation and the current friction in the device 

Exposure to 
Vibrations 

Measure of the number of incidences reported which would have caused the 
device to be subjected to external vibrations 

Water Meters 

Mounting Position 
The measure of the number of days since regulatory check was performed to 
observe the mounting position of the device 

Environmental Factors 
Number of incidences reported which may have affected the mounting 
position of the device 

Particle Collection Measure of the amount of particle deposition 
 

 
5. DQ Metrics Calculus 
 

In DQ calculus implementation we investigate a 
wide number of options of calculating integral 
indicators from separate metrics ranging from simple 
weighted sums to sophisticated logical functions and 
systems. Those metrics and their calculation 
procedures will compose the DQ calculus. To 
simplify the calculus, we organize it as a hierarchical 
system calculating first the group indicators and then 
combining them into the system total. We follow the 
user-centric approach by offering an application user 

a choice of various options and their adjustment. We 
plan to introduce a function choice automatic 
adjustment, verification and optimization. 

To realize a wide variety of logical functions, the 
expert system technology is employed as the main 
implementation technique. The automated tool set 
includes the hierarchical rule-based systems deriving 
values for separate metrics, then combining them into 
groups and finally producing an overall evaluation. 
This way, the tool operation follows up the metrics 
structure and composition (see Fig. 1). This system 
needs to be complemented by the tools and databases 
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assisting automation of all stages in the data 
collection, communication, processing and storage 
for all information available for data quality 
evaluation. The developed tools facilitate automated 
collection, communication and processing of the 
relevant data. Based on the data collected, they not 
only evaluate the overall data quality but also 
determine whether or not the data collection practice 
in place is acceptable and cite areas that are in need 
of improvement.  

In our automated procedures, the DQ score is 
computed by applying either linear, exponential or 
stepwise linear reduction series to the maximum 
score of an attribute. In case an attribute defines a 
range for ideal working, the linear series is 
substituted by a trapezoidal drop linear series and 
exponential is replaced by a bell drop series.  

When considering both accuracy and security DQ 
metrics, assessing whether fusion enhances DQ is not 
obvious as one has to tradeoff between accuracy, 
security and other goals. While adding up a more 
secure data transmission channel improves both 
security and accuracy indicators, using a more 
accurate data stream will definitely improve data 
accuracy but could be detrimental to certain security 
indicators (see [30] for further discussion). If 
resources are limited, as in the case of sensor 
networks, one might consider trying to improve 
accuracy of the most secure data source versus more 
or less even distribution of security resources in order 
to achieve the same security levels on all data 
channels. The concrete recommendations will depend 
on the application. 

 
 

6. Generic Tool Design 
 
The proposed design of the tool divides the 

procedure for automated data collection into three 
main stages. First stage involves mainly a device 
configuration. Since the tool is generic, it provides 
certain flexibility in configuring a large variety of 
diverse devices. These devices could be electric 
meters, power meters, water meters and marine 
sensors. The second stage computes data quality 
indicators of the configured device. The final stage 
performs the detailed analysis of the computed data 
quality indicators. It highlights low data quality and 
help flag erroneous data. Also, it provides 
recommendations on improving low data quality and 
helps ensure that the data being utilized are fit for the 
purpose it is intended to be used. Fig. 2 presents the 
architecture of the tool. Currently, the first and the 
second stages are implemented. 

The generic tool allows for a configuration of a 
large variety of devices. Each automated data 
collection device has DQ factors, which are common 
to other similar devices. These factors are referred by 
the tool as generic attributes. Other attributes, which 
are unique to a particular device are called dynamic 
attributes. These attributes are assigned the 
maximum score based on the significance of the 

contribution they would add to the data quality. The 
greater the significance, the greater is the score. 

 
 

 
 

Fig. 2. Data quality evaluation procedure. 
 
 

The configuration step mainly involves 
recognizing the generic and application-specific 
attributes, as well as assigning the max possible score 
to each of them. Generic attributes are common to 
most devices, for example, timeliness and quality of 
common device servicing such as calibration. 
Application-specific attributes are unique to a device, 
for example, exposure to vibration, shock and 
radiation. This is important for a particular 
application because certain devices, like electric 
meters, produce misleading results when exposed to 
the external adversary affects. If, for some reason, a 
generic attribute does not apply to a particular device, 
the max score of zero would be applied in order to 
eliminate the attribute from the analysis. Table 1 
describes the generic attributes being considered by 
the tool. Fig. 3 illustrates configuring some of the 
generic attributes for an electric meter. Table 2 
describes some application specific attributes, which 
are device and application specific. Fig. 4 illustrates 
configuring an application-specific attribute for an 
electric meter, provided as an example. 

 
 

 
 

Fig. 3. Generic attribute configuration. 
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Fig. 4. Application specific attribute configuration. 
 
 

The second stage involves data quality 
computation. The configured generic and application 
specific attributes help compute the individual 
quality scores. Each attribute is considered a quality 
indicator, whose significance will be dependent on its 
max score. These quality indicators produce a quality 
score using a chosen logic procedure. For example, 
we can consider a generic attribute called time-since-
calibration. Some devices need to get calibrated 
every year. If a device has not been calibrated for an 
entire year or a couple of years, the quality factor for 
that indicator will go down. If the device has never 
been calibrated since its installation it can affect the 
quality score even more. The tool allows a user to 
define the procedure for calculating the application-
specific quality indicators. 

 
 

7. Conclusions 
 

The paper introduces a novel approach to data 
management in data collection and processing 
systems, which might incorporate SCADA, sensor 
networks and other systems with nanoscale devices. 
According to this methodology, we associate each 
data entity with the corresponding DQ indicator. This 
indicator integrates various data characteristics 
ranging from accuracy to security, privacy and 
safety, etc. It considers various samples of DQ 
metrics representing communication and computing 
security as well as data accuracy and other 
characteristics. Incorporating security and privacy 
measures into the DQ calculus is especially 
important in the current development as it allows 
shifting the DQ assessment from the point of data 
origin to the point of data use.  

In order to achieve this goal, one needs to 
develop the DQ indicators structure and composition 
as well as their integration calculus that would allow 
calculation of the integral quality indicators. Over the 
last decade, a variety of indicators and methods have 
been investigated. The paper examines two major 

approaches: an engineering and information systems. 
The engineering approach employs signal level 
characteristics and develops calculus based on their 
probability measures. The information system 
approach utilizes higher level metrics that could be 
calculated over some time and samples, such as the 
data accuracy, data consistency, etc. 

A unified framework for assessing DQ is critical 
for enhancing data usage in a wide spectrum of 
applications because this creates new opportunities 
for optimizing data structures, data processing and 
fusion based on the new DQ information use. By 
providing to an end user or an application the DQ 
indicators which characterize system and network 
security, data trustworthiness and confidence, etc. 
Correspondingly, an end user is in a much better 
position to decide whether and how to use data in 
various applications. A user will get an opportunity 
to understand and compare various data files, streams 
and sources based on the associated DQ with integral 
quality characteristics reflecting various aspects of 
system functionality and to redesign data flows 
schemes. This development will transform one-
dimensional data processing into multi-dimensional 
data optimization procedures for application-specific 
data applications. We describe and demonstrate an 
application of the DQ metrics definition and 
calculation tools, which enable integration of various 
metrics to calculate an integral indicator. 
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